Gravitational self force and gauge transformations

نویسندگان

  • Leor Barack
  • Amos Ori
چکیده

We explore how the gravitational self force (or “radiation reaction” force), acting on a pointlike test particle in curved spacetime, is modified in a gauge transformation. We derive the general transformation law, describing the change in the self force in terms of the infinitesimal displacement vector associated with the gauge transformation. Based on this transformation law, we extend the regularization prescription by Mino et al. and Quinn and Wald (originally formulated within the harmonic gauge) to an arbitrary gauge. Then we extend the method of mode-sum regularization (which provides a practical means for calculating the regularized self force and was recently applied to the harmonic-gauge gravitational self force) to an arbitrary gauge. We find that the regularization parameters involved in this method are gauge-independent. We also explore the gauge transformation of the self force from the harmonic gauge to the Regge-Wheeler gauge and to the radiation gauge, focusing attention on the regularity of these gauge transformations. We conclude that the transformation of the self force to the Regge-Wheeler gauge in Schwarzschild spacetime is regular for radial orbits and irregular otherwise, whereas the transformation to the radiation gauge is irregular for all orbits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinate transformations and gauges in the relativistic astronomical reference systems

This paper applies a fully post-Newtonian theory (Damour et al. 1991, 1992, 1993, 1994) to the problem of gauge in relativistic reference systems. Gauge fixing is necessary when the precision of time measurement and application reaches 10−16 or better. We give a general procedure for fixing the gauges of gravitational potentials in both the global and local coordinate systems, and for determini...

متن کامل

Gauge problem in the gravitational self-force: Harmonic gauge approach in the Schwarzschild background

The metric perturbation induced by a particle in the Schwarzschild background is usually calculated in the Regge-Wheeler ~RW! gauge, whereas the gravitational self-force is known to be given by the tail part of the metric perturbation in the harmonic gauge. Thus, to identify the gravitational self-force correctly in a specified gauge, it is necessary to find out a gauge transformation that conn...

متن کامل

Gravitational self-force on a particle orbiting a Kerr black hole.

We present a practical method for calculating the gravitational self-force, as well as the electromagnetic and scalar self-forces, for a particle in a generic orbit around a Kerr black hole. In particular, we provide the values of all the regularization parameters needed for implementing the (previously introduced) mode-sum regularization method. We also address the gauge-regularization problem...

متن کامل

Self-Force in the Radiation Reaction Formula Adiabatic Approximation of a Metric Perturbation and an Orbit

We investigate a calculation method for the gravitational evolution of an extreme mass ratio binary, i.e. a binary constituting of a galactic black hole and a stellar mass compact object. The inspiralling stage of this system is considered to be a possible source of detectable gravitational waves. Because of the extreme mass ratio, one may approximate such a system by a black hole geometry (a K...

متن کامل

Gravitational Lorentz Force

In quantum gauge theory of gravity, the gravitational field is represented by gravitational gauge field. The field strength of gravitational gauge field has both gravitoelectric component and gravitomagnetic component. In classical level, gauge theory of gravity gives out classical Newtonian gravitational interactions in a relativistic form. Besides, it gives out gravitational Lorentz force whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001